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ABSTRACT 

This paper presents a predictive vehicle directional stability 
control structure that has integrated energy-loss reduction 
benefits during transient handling maneuvers. The method is 
based on the idea of balancing longitudinal and lateral tire force 
saturation levels using a cascade model predictive structure for 
the optimal distribution of tractive or braking torques. Balancing 
saturation levels also has the added benefit of reducing and 
evening-out tire wear. To demonstrate the energy-loss reduction 
benefits, we consider nonlinear simulations of a nominally 
unstable truck featuring an independent drive system. 
Comparisons against a commonly cited brake-based yaw stability 
control strategy with similar directional control performance 
shows that the proposed predictive saturation management 
approach provides energy-loss reductions of more than 60%. This 
energy efficiency benefits are retained whether or not the drive 
system has regenerative/energy recovery capabilities. 

Keywords: cascade MPC, vehicle stability control, tire 
saturation, independent drive 

NOMENCLATURE 
A, B, C, E  Linearized model matrices 
A Cross-sectional area 
Aeq, Beq Equality constraint matrices 
bi Viscous wheel damping 
CD Aerodynamic drag coefficient 
Cα Lateral cornering stiffness 
Cx Longitudinal slip stiffness 
df Front track width 
dr Rear track width 
ΔEkinetic Change in kinetic energy 
Eloss Energy loss due to tires 
FMVSS: Federal Motor Vehicle Safety Standards 
Fx Longitudinal tire force 
Fy,f Front axle lateral force 
Fy,r Rear axle lateral force 
Iw Tire/wheel rotational inertia 
J Cost/objective function 

Jz Vehicle yaw inertia 
K1, K2 Tire property coefficients 
lf Distance from CG to front axle 
lr Distance from CG to rear axle 
m Vehicle mass 
Mψ Corrective yaw moment 
Q1 Instant weighting matrix for low-level MPC 
Q Expanded weighting matrix for low-level MPC 
Qα,1 Instant weighting matrix for high-level MPC 
Qα Expanded weighting matrix for high-level MPC 
Rw Tire Radius 
Ti Individual wheel torque 
u Control input 
Δu Control input increment 
U Expanded control input for prediction 
ΔU Expanded control input increment for control horizon 
VSC Vehicle Stability Control 
Vx Longitudinal vehicle velocity 
Vy Lateral vehicle velocity 
Wt,i Individual work of applied wheel torque 
Waero Work of aerodynamic drag force 
WRR  Work of rolling resistance 
x Predicted state vector 
y Predicted output vector 
Y Predicted output vector for entire prediction horizon 
α Lateral slip angle 
αsat Lateral tire saturation 
γ, ζ, Ω Prediction matrices 
δ Road wheel steering 
ψ yaw angle 
κ Longitudinal tire saturation 
σ Longitudinal slip ratio 
ρ Air density 
ωi Individual wheel spin 

INTRODUCTION 
The safety benefits of vehicle directional stability control 

systems are now well recognized as is evident with the adoption 
of the FMVSS 126 rule requiring electronic stability control 
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systems for all new light vehicles sold in the US[1]. The most 
common implementations of these stability control systems 
involve brake-based solutions where the necessary corrective yaw 
moments are generated using differential braking. Proposed 
alternative implementations include active front and rear steering 
[2-4], active and semi-active suspensions [5, 6] and variations of 
active torque management [7-9]. In most of these works, 
consideration of the force generation capability is limited, at most, 
to friction estimation and subsequent adjustment of reference 
targets and control gains. 

In this paper, we consider a direct and predictive 
consideration of tire force-capability in the design of the vehicle 
stability control (VSC) structure. Our approach is particularly 
suited for advanced and emerging vehicles with powertrains 
incorporating independently controlled wheel/axle drives (e.g. in-
wheel or hub motors[10]). These power trains offer increased 
energy-efficiency, reliability and packaging benefits. The specific 
purpose of this paper, however, is to demonstrate that the 
proposed predictive stability control structure in itself provides 
additional energy-loss reduction benefits by balancing and 
reducing the tire-force saturation levels among all tires of the 
vehicle. 

Our approach involves defining longitudinal and lateral tire 
force saturation levels as quantities that can be estimated using 
tire force and slip angle estimation schemes that have already 
been proposed and demonstrated in the literature [11-15]. These 
schemes rely on readily available vehicle dynamics sensors (yaw 
rate, lateral acceleration, wheel speeds) and reduced-order vehicle 
and tire/wheel dynamics models. Given the saturation levels, we 
then set up a two-level model predictive control (MPC) structure 
with cascaded optimization objectives of balancing these 
saturation levels among all the tires of the vehicle in determining 
the optimal drive torque distribution. For the first, high-level 
MPC, we set the objective as that of re-balancing the per-axle 
lateral force saturations. This objective is motivated by the 
observation that such front/rear lateral force saturation 
differentials are directly related to the understeer/ oversteer 
behavior of the vehicle, as we showed in our previous work[16]. 
The second, low-level MPC is given the objective of balancing 
the longitudinal tire force saturation levels so that no one tire is 
unnecessarily oversaturated. This latter objective is constrained by 
the high-level stabilization objective as well as the driver 
demanded torque for maintaining forward speed. 

It turns out that this idea of balancing tire force saturation 
levels has an inherent energy-loss reduction benefit. This is 
because the optimal distribution of drive torque that minimizes 
saturation imbalances reduces unnecessary overtaxing of any one 
tire that has already saturated. Such a tire cannot generate any 
more force but will simply operate in the dissipative sliding zone. 
The proposed approach re-distributes the demand to the still 
capable tire(s) with less saturation levels. This allocation of the 
drive torques is best done in a predictive framework where 
assumptions are made about the tire-behavior vis-a-vis tire-
behavior prediction models. In this work, we assume that such 

models (e.g. Pacejka models[17]) are available, at a minimum, as 
look up tables of the relevant cornering and slip stiffness’s vs. slip 
quantities as we detail below. 

The rest of the paper is organized as follows. First, we 
formally define tire-force saturation for our purposes and discuss 
the proposed cascade MPC strategy that uses these saturation 
levels in the optimization objectives. We then apply the strategy 
to a nonlinear 7 DOF handling model of a medium duty truck 
featuring independent wheel drive. For the purposes of 
comparison, we also consider a conventional brake-based stability 
control strategy. Comparative results are presented and discussed, 
and finally, we provide the conclusions of the work. 

DEFINITION OF TIRE FORCE SATURATION 
The saturation level characterizes the deficiency of a tire to 

generate a force that increases linearly with slip (see Fig. 1). 

 

FIGURE 1 DEFINITION OF LONGITUDINAL TIRE 
SATURATION 

The longitudinal tire force saturation is defined by: 

κ
i
=σ

i
−
F
x,i

C
x,i   (1) 

where, σi is the tire/wheel longitudinal slip ratio; Fx,i, is the 
longitudinal tire force; and Cx,i is the slip stiffness of the tire. 
Saturation of the lateral force can be defined similarly. For the 
purposes of this paper, only the per-axle lateral force saturations 
are relevant and are defined by: 

α sat =α −
Fy

C
α   (2) 

where, α is the (front or rear) axle slip angle, Fy is the axle lateral 
force and Cα is the axle cornering stiffness. We again note that 
both the forces and slip quantities are assumed known via one or 
more of the various estimation methods cited earlier. We also note 
that at high slip values corresponding to predominantly 
(dissipative) sliding zones on the tire-road contact patches, the 
saturation levels grow drastically.  
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CASCADE MPC FOR VSC 
Model predictive control (MPC) is receiving increasing 

attention in vehicle dynamics control, particularly for autonomous 
vehicle applications[18-22]. MPC uses the system’s model to 
predict the system’s response to suitably parameterized future 
control inputs, and makes optimization decisions that lead to the 
selection of the optimal control inputs that achieve some desired 
objective without violating constraints[23]. In this work, we 
propose and implement a two-level cascade MPC structure for 
vehicle stability control. The scheme is shown in Fig. 2. 

 

FIGURE 2 CASCADE MPC FOR VSC 

This cascade MPC structure is motivated by physical grounds 
and exploits the natural time-scale separation of the rotational 
dynamics of the tire/wheel system(faster) from that of the lateral 
dynamics of the vehicle (slower). As already mentioned, the high-
level control determines the necessary corrective yaw moment in 
away that balances the lateral force saturations between the front 
and rear axles. This serves to correct oversteer/understeer. The 
low-level control determines the drive/brake torque distributions 
that balance the individual longitudinal tire force saturations. The 
distribution is constrained by the (driver demanded) speed control 
torque as well as the corrective yaw moment needs determined by 
the high-level MPC. Each level of the cascade follows established 
MPC computational steps we briefly describe below. The reader 
is referred to the text book [23] for detailed discussions of MPC. 

Low-level MPC 
The presence of distinct longitudinal saturations is 

unavoidable when using driving/braking distributions to achieve 
yaw corrections while meeting forward speed demands. Instead, 
in determining the optimal torque distributions, we can set the 
objective to be that of balancing the saturation levels among all 
tires. A suitable cost function for this objective is computed as the 
cumulative deviation of the individual longitudinal saturations 
from their average: 
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This can be re-written in the usual quadratic matrix form as: 
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where, κ is a vector of the individual longitudinal tire saturations, 
and Q1 is the constant positive semi-definite matrix as given. It is 
possible to include additional terms that penalize the magnitudes 
of the individual saturation levels, which will give a different 
positive (semi-definite) definite matrix Q1. However, we found 
the above form sufficient for our purposes here.  

The two constrains of the low-level torque distribution MPC 
are: 
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where, df and dr are the track widths; Rw is the effective tire 
radius; Fx,i is the individual wheel forces; Mψ is the corrective yaw 
moment determined by the high-level control; Ti is the individual 
wheel torques; and Ttotal is the total commanded base torque (for 
driver/forward speed control). Additional softer constraints on the 
increment of the wheel torques can be added to limit the rate of 
change of the wheel torque to values achievable by the physical 
actuators/motors. The low-level MPC optimization problem can 
be cast in standard form as follows: 

min
ΔU

Y
T
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T
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where, the functions f and g define the predictive vehicle and 
tire/wheel dynamics model (whose linearization is described 
below); u is a vector of the four wheel torques with control 
horizon Hu ; x is a vector of the system states that include the 
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forward velocity, four wheel spins, and four longitudinal tire 
forces; Y is a system output vector which is a concatenation of the 
individual tire saturations into the future prediction horizon Hp; 
Aeq and Beq are constant matrices that define the equality 
constraints; Q and R are weighting matrices to be defined below. 
In this work, we set the control horizon to be equal to the 
prediction horizon. 

The selection of the prediction horizon Hp should consider the 
specifics of the physical process. In the present case, the main 
considerations include apriori unknown future exogenous inputs, 
such as the driver inputs of steering and commanded base torque, 
and the uncertainty associated with the linearization of the vehicle 
and tire models. A remedy adopted here is to consider a short 
prediction horizon (of 0.1 seconds) implemented in a receding 
horizon scheme with fast update cycles (of 0.01 seconds) so the 
most recent information of these inputs can be used and the 
effects of the linearization and driver command sampling errors 
can be minimized. 

The linearization of the longitudinal vehicle dynamics gives: 

 

V
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where Vx is the vehicle’s forward velocity, Fxi are the longitudinal 
tire forces; ρ is air density; CD and A is the vehicle’s drag 
coefficient and cross-sectional area;Vx0 is the vehicle’s velocity at 
the point of linearization (current state). For the tire/wheel 
rotational dynamics of each of the four tires:  
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where, the Ti is the controlled torque, Rw is the effective tire 
radius, and bi is wheel viscous damping.  

The longitudinal tire force saturation defined earlier includes 
the longitudinal tire forces. It is desirable to formulate state 
equations for these forces. The longitudinal force dynamics can be 
constructed considering that these forces are functions of both the 
vehicle speed and tire/wheel spin. Then: 
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where, the coefficients K1 and K2 are determined from a nonlinear 
representation of the tire force/slip curve and partial derivatives of 
the slip ratio at the linearization point(given by Vx,0 and ωi,0). The 
gradient of the tire force with respect to slip ratio is a form of 
effective slip stiffness that can be implemented using a simple 
lookup table based on the current estimate of slip ratio at the 
linearization point. The look up table is to be obtained from tire 
test data or its analytical representations (e.g. Pacejka models).  

The defining equations of the longitudinal saturations are 
linearized at the current states as follows: 
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Equations (8)-(11) can be written in linear state space form 
and subsequently discretized for use as the predictive model for 
MPC. Details of these steps are given in [24]. To proceed, we 
write the resulting model in the form: 

211 BuBAxx kkk ++=+   (12) 

11 ECxy kk +=+   (13) 

where, the matrices of A, B1, B2, C, and E1 are updated based on 
the linearization of the system at each control update cycle. Here, 
y is the output vector of the longitudinal saturations. By 
expanding the state and output vectors into the prediction horizon, 
the predicted outputs can be assembled in the compact form: 

EUuxY kk +Δ+Ω+= − ζγ 1   (14) 

where Y and ΔU are concatenations of the predicted saturation 
outputs and wheel torque (control input) increments, respectively, 
through the prediction horizon; matrices γ, Ω, ζ, and E  are 
constant during one control update/iteration; xk and uk-1 are the 
current states and previous control inputs, respectively. 

Substituting (14) in the optimization problem (7), expanding, 
simplifying, collecting terms, and neglecting constant additive 
terms, the optimization problem reduces to a quadratic form: 
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subjected to:

AeqΔU = Beq

 (15) 

where, the weighing matrix Q considers the saturation 
management objective (as concatenations of Q1 given by Eq(4) 
into the prediction horizon); and R is a diagonal of control weights 
which affect the soft constraint on the rate of change of the input 
torques. The equality constraints of total torque and corrective 
yaw moment given previously ((5) and (6)) can be expressed in 
terms of the control input increment for the prediction horizon. 
The steps for doing this (i.e., for extracting Aeq and Beq in (15)) 
are detailed in [24]. The optimization problem in (15) can be 
easily solved for the wheel torque increments, ΔU, using quadratic 
optimization software tools. The MPC scheme updates this 
solution (including the linearizations) at each control update 
cycle. For the torque distribution problem, this update is done at 
100 Hz (or every 0.01sec). 
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High-level MPC 
We incorporate the definition of axle lateral force saturation 

given earlier into an appropriate objective function for the high-
level vehicle stability control. Proceeding as before, the objective 
is set as one of minimizing the deviation of the lateral axle 
saturation levels from their average. The cost function is given by: 
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This can then be rewritten in quadratic matrix form as: 
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where, Qα,1 is a constant positive semi-definite matrix and α is a 
vector of the lateral axle saturations. The optimization problem 
for the MPC is then posed as: 
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where, the functions f and g represent the lateral handling model 
of the vehicle used as the prediction model; U is the vector of 
corrective yaw moments over the control horizon Hu; Y is the 
lateral axle saturations expanded into the prediction horizon Hp; 
and ULB and UUB are the upper and lower bounds of the control 
input and limit the corrective yaw moment to physically 
achievable values.  

There are two structural differences of this objective function 
compared to that of the torque distribution control problem of the 
previous section. First, the penalty weight, R, on the control input 
is applied to the absolute magnitude of the control input but not to 
the increment of control. In our simulations, formulations 
including increment terms did not significantly improve 
performance. Furthermore, there is a fundamentally different goal 
in formulating the penalty in this manner. In the torque 
distribution control, it was desired to not significantly change the 
torque unless it was necessary, while in the present yaw moment 
control we penalize any magnitude of the corrective yaw moment 
(not just its increment). Secondly, there are no equality constraints 
for the present optimization to satisfy, but limiting bounds are 
selected considering the capability of the vehicle to be controlled.  

The predictive model we use for lateral handling dynamics is 
a single-track vehicle model at constant forward velocity: 
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where, Vy and ψ  are the states of lateral velocity and yaw rate; 
the FyF and FyR are the front and rear axle lateral forces; m is the 
total vehicle mass; Vx,0 is the current estimate of the forward 
velocity; Jz is the yaw inertia; lf and lr are the distances from the 
vehicle’s c.g. to the front and rear axle, respectively; Mψ is a 
corrective yaw moment to be determined by the predictive 
control. 

The lateral force is a nonlinear function of lateral velocity and 
yaw rate, which together define the axle slip angles. A simple 
first-order relaxation length model [25] was used to address the 
delay between the generation of lateral slip angle and the 
corresponding force. Linearization of this force dynamics leads to: 
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where, λF and λR are the front and rear relaxation lengths, 
respectively; fy,F and fy,R are the nonlinear functions describing tire 
lateral force versus slip angle; αF and αR are the front and rear axle 
slip angles, respectively; and δ is the road wheel steering angle 
(front steered vehicle). Substituting the definitions for the axle 
slip angles[26], the lateral axle force dynamics can be expressed 
in-terms of the yaw rate and lateral velocity: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟⎠

⎞
⎜⎜⎝

⎛ −
−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟⎠

⎞
⎜⎜⎝

⎛
−

+
−=

Ry
x

ry

R

x
Ry

Fy
x

fy

F

x
Fy

F
V
lV

C
V

F

F
V
lV

C
V

F

,
0,

2
0,

,

,
0,

1
0,

,

ψ
λ

δ
ψ

λ





 (21) 

where, C1 and C2 are the partial derivatives of the tire force 
functions versus slip angle and represent the effective axle 
cornering stiffnesses at the operating points (current states). 
Again, these can be implemented through look up tables, and 
constitute a major simplification in the predictive model. The 
values of these stiffnesses are to be updated at each 
iteration/update of the controller. 

For the implementation of the lateral axle saturations in the 
objective function, it is desirable to have the axle saturations as 
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outputs. From the definitions of axle saturation given by Eq (2), 
the linearized front and rear axle saturations are given as outputs 
of the state-space handling model (19&21) as follows: 
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Using this linearized state space model, discretizing, and 
proceeding in similar steps as above, the forward prediction can 
be written compactly as: 

Y = γ x
k
+ζU + E   (23) 

where, Y is a concatenation of axle saturation levels through the 
prediction horizon; U is a vector of the corrective yaw moments 
for the horizon; the matrices of γ, ζ, and E  have similar 
interpretations as before. With this, the optimization problem for 
the high-level MPC can be re-written as: 

min
U

U
T ζ T

Qζ + R⎡⎣ ⎤⎦U + ζ xk( )
T
Qζ + E

T
Qζ⎡

⎣

+ xkγQ( )
T
ζ + EQ( )

T ⎤
⎦ζU

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

subject to:

ULB <U <UUB

 (24) 

This formulation is different from standard MPC 
formulations[23] due to the constants (E ) in the prediction 
model. The optimal control input U that minimizes the objective 
can be readily obtained through quadratic programming methods. 

The prediction horizon for the high-level MPC is chosen as 
0.5 sec and its control update interval is chosen to be 0.1 sec and 
this is consistent with the short prediction horizon of the low-level 
control. For the optimizations conducted at each update, we 
assume that the remaining exogenous input (the steering input in 
the case of the high-level control) remains constant during the 
prediction horizon. Simulations suggest that the fast control 
updates (every 0.1 sec) help compensate for limitations of this 
assumption. 

RESULTS AND DISCUSSIONS 

Vehicle and Maneuver  
For the purpose of demonstrating the performance of the 

proposed cascade MPC saturation management strategy, we 
applied the strategy to a simulation model of a medium duty truck 
with a GVW of 8000 lbs and with a powertrain featuring 
independent wheel drives (4x4). This vehicle has a high center of 
gravity and easily approaches oversteer conditions during 
transient maneuvers on dry asphalt road. The mathematical 
vehicle model exercised in these analysis is a 7 DOF (body yaw, 
lateral and longitudinal motions, and 4 tire/wheel rotations) 

nonlinear model and is described elsewhere[20]. We also adopt an 
open-loop “sine with dwell” maneuver that has been defined by 
NHTSA [1] to emulate a severe obstacle avoidance type 
maneuver for the purpose of evaluating VSC systems. This input 
induces a dynamic nonlinear response featuring high sideslip for 
the uncontrolled vehicle.  

Comparison VSC strategy 
By way of comparison, we consider a traditional PI-type yaw 

rate reference controller [2, 12] to substitute the high-level yaw 
moment controller of the cascade MPC structure. In addition, the 
low-level controller is substituted with a rule-based controller that 
achieves the desired corrective yaw moment by differential 
braking of the individual tires. This cascade of yaw rate reference 
(high-level) and rule-based brake (low-level) control strategy is 
tuned to give similar stabilizing performance as the cascade MPC 
discussed in this paper. This is shown in Fig 3. The same driver 
(speed controller) was used for the both cases. 
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FIGURE 3. COMPARISON OF PERFORMANCE 

In this comparison (Fig.3), it should be noted that the two 
controllers both stabilize the vehicle but work differently. The 
goal of the rule-based control is to force the vehicle to obtain the 
desired reference yaw rate and does not take into consideration 
the handling balance or tire/axle force capability. It consequently 
sacrifices efficiency as demonstrated by higher vehicle side-slip 
angles and larger reductions in forward velocity. Conversely, the 
cascade MPC strategy does not use a reference yaw rate. Instead, 
it stabilizes the vehicle by achieving a balance of saturations and 
therefore involves a more efficient use of the available tire 
traction as indicated by the lower side-slip angles and lower 
reduction in forward velocity.  

Control Efforts and Energy Losses 
Figure 4 shows the corrective yaw moments and individual 

torques applied by the two stability control structures during the 
maneuver. It can be seen that the cascade MPC strategy proposed 
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here involves lower control magnitudes than the rule-based brake 
approach, in terms of both the high-level corrective yaw moment 
and the low-level individual wheel torques.  
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FIGURE 4. CORRECTIVE YAW MOMENT AND INDIVIDUAL 
WHEEL TORQUES UNDER THE TWO STRATEGIES 

We also computed the energy losses for the vehicle when 
undergoing the same maneuver under the two stability control 
structures. The energy losses are computed by: 

kineticRRAero
RRLRRFLFi
iTloss EWWWE Δ−−−= ∑

= ,,,
,  (25) 

Here, the first term is the total work done by the individual wheel 
torques, the second and third terms are aerodynamic and rolling 
resistance losses, respectively, and the last term is the net change 
in the total kinetic energy of the vehicle system during the 
maneuver. The net loss is the dissipation at the tire-ground contact 
patches (non-conservative work done by the tire forces). 
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FIGURE 5. ENERGY LOSSES UNDER THE TWO 
STRATEGIES 

Figure 5 shows the energy losses under the two VSC 
structures. We also included cases where all (no regen) or half 

(50% regen) of the regenerative braking torques of the cascade 
MPC structure are assumed lost due to some inefficiency of the 
drive system. It can be seen that the cascade MPC structure 
involves significantly lower energy losses than the traditional 
structure and this advantage remains even if the independent drive 
system has significant inefficiencies (even if it is completely 
dissipative with no regen). This implies that lower energy loss 
benefits come from the more efficient use of tire traction 
capability by the cascade MPC structure. 

This last point is also confirmed by comparing the 
longitudinal tire saturation levels shown in Fig 6. The cascade 
MPC maintains low-levels of tire saturations, across all tires, as it 
is designed to do. The rule-based brake strategy, on the other 
hand, involves excessive saturations on individual tires for the 
aggressive differential braking needed to generate the high 
corrective yaw moments necessary to stabilize the vehicle. 
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FIGURE 6. LONGITUINAL SATURATIONS UNDER THE TWO 
STRATEGIES 

CONCLUSIONS 
In this paper, we proposed a cascade MPC strategy for 

vehicle stability control that embeds energy-loss reducing 
features. The strategy is envisaged for vehicles featuring 
independent wheel drives where it is possible to distribute 
drive/brake torques in such away as to balance tire-force 
saturation levels. Our approach assigned the objective of 
balancing lateral force saturation levels to a high-level controller 
that determines the necessary corrective yaw moment, which is 
then passed as a constraint to a low-level controller whose 
objective is balancing longitudinal tire force saturations.  

The results show that for a standard transient handling 
maneuver, the presented cascade MPC strategy involves less 
energy losses through the maneuver than a traditional yaw-rate 
error correcting, brake-based VSC strategy. This is explained 
further by looking at individual tire saturation levels, which 
remained low with the cascade MPC strategy (due to reduced 
operation in sliding dominated regimes). The results also indicate 
that the absence or in efficiency of regenerative capability have 
relatively low impact on the energy-loss reduction benefits. 

A number of aspects of this proposed approach require 
further exploration including, but not limited to: load adaptability 
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for tire-model parameters, constrained optimizations that embed 
regenerative limitations, real-time solvability of the cascade MPC 
on control prototyping and commercial hardware (ECUs). 
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